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Abstract 

 The stationary distribution hypothesis, first proposed by Sewall Wright in 1969, argues 
that the probability of a random allele occurring at a frequency of p is a beta distribution of p, 
assuming no selection. As we expect 4N​e​u to be relatively small in the large human population, 
we are interested in seeing how this theory applies to real world datasets. We hypothesized we 
would get a beta distribution with alpha and beta parameters of -1. We ran an analysis of SNPs 
across the entire exome against this theory using the gnomAD dataset, split by population, type 
of mutation, and chromosome, and found that one, the alpha and beta parameters were fairly 
far off from -1, and two, the quality of the fit was extremely poor. We then accounted for 
selection by looking at the log of the probability distribution of synonymous distribution divided 
by the probability distribution of nonsynonymous distribution. We did find reasonable high 
statistical significance in the selection coefficient data, but given the lack of evidence for the 
model matching the data alone, we hesitate to draw many conclusions from this. 

Introduction 

 The stationary distribution model states that the following equation represents the 

distribution of allele frequencies: , where M(p) is the change in p(p) (e )/(V (p))  ϕ = c
2 (x)/V (x) dx∫
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after one generation, V(p) is the variance in p, and c is a normalization constant. When mutation 
is the only force accounted for,  where u is the forward mutation rate and(p) − p (1 )vM = u +  − p  
v is the backward mutation rate, and . This leads to the equation(p)  (1 )/(2N )V = p − p e  

, which is a beta distribution with parameters  and(p) cp (1 )  ϕ =  4N v−1e − p 4N u−1e  N vα = 4 e  
. When incorporating selection into this theory, , N uβ = 4 e (p) p (1 )/2 p (1 )vM = s − p − u +  − p  

which changes the distribution to be . Since this only varies(p) cp (1 ) e  ϕs =  4N v−1e − p 4N u−1e 4N spe  
from the nonselective model by the addition of the  term, we can in theory take thee4N spe  
logarithm of the distributions divided by each other to determine the selection coefficient, as 
shown here: , .(p)/ϕ (p) ce  ϕs  =  4N spe (p)/ϕ (p)) 4N sp  log(ϕs  =  e + c   

Using the stationary distribution theory, we could possibly determine another metric for 
measuring the selection coefficient on larger scales. While the stationary distribution theory 
would provide a sort of weighted average across a large portion of the genome, most current 
metrics of selection provide finer grained resolution, so it would likely serve as a check against 
other metrics for validity. Some examples of metrics to determine selection include the long 
range haplotype test, F​st​, p​excess​, Tajima’s D, and dN/dS. The long range haplotype test, F​st​, 
p​excess​, and Tajima’s D all serve as metrics of selection within a species, whereas dN/dS 
compares selection between species. Tajima’s D works by comparing two estimates of mutation 



 

rate, which will be skewed depending on the amount of and type of selection. This means that 
Tajima’s D has difficulty distinguishing between the mutation rate effects and the selection 
coefficient, while the stationary distribution could, in theory, separate these two parameters. F​st 
is a commonly used and useful metric of selection, but can be inconsistent-a small F​st​ value may 
just be indicative of the allele’s commonness in the larger population .  p​excess​, while a powerful 1

statistic, relies on knowing the ancestral populations’ allele frequencies, of which there are few 
reliable methods for us to use. The long range haplotype test, a measure of whether linkage 
disequilibrium decreases at the rate one would expect, also requires knowing the haplotypes 
which can require an excessive amount of data storage for large datasets, such as the entire 
genome, and also risk the loss of privacy of the individuals whose DNA contributed to the 
sample . The biggest weakness of the stationary distribution model to estimate selection 2

involves the amount of data necessary for it to become statistically relevant, pushing its 
resolution down. However, as a metric for broad estimates of selection, it may become 
interesting, especially when combined with current methods. 

Results 

Data Processing 

 Data was derived from the gnomAD database. We attempted first to process the data 
using the myVariant.info API to access the data, but found that the process was too complicated 
and limited the amount of information we could get from the gnomAD database. We therefore 
did initial testing on single genes using csvs downloaded directly from gnomAD. We finally 
downloaded the data for the entire exome using gsutil and were able to analyze and process all 
of the data by directly parsing the text files to access the data. Data acquired and used from 
each variant included allele count (the number of times that allele was found) and allele number 
(the number of times that SNP was tested) per population and the type of the variant. 
Information on the number of variants found per chromosome can be found in the “meta.txt” file 
within the GitHub repository; population division of number of variants can be found in the 
“fit_params.txt” files. 

Beta Distribution Fitting and Goodness of Fit 

The beta distribution was fit to the data using numPy’s built in beta distribution fit 
algorithm, which determines the alpha and beta parameters for the beta distribution. To 
calculate the goodness of fit of the data to the model, we used the Kolmogorov Smirnov test. 
The KS test assumes a null hypothesis that the data matches the model, and the p value states 
the probability that the data does not actually fit the model. Since we were unfamiliar with this 
statistic prior to using it, we also compared it to a neutral test-if we randomly sampled the same 
number of values from the corresponding beta distribution, what would the statistic be? We 
found that the KS test gave p-values of practically 0 (p<0.0000005, usually by a large margin) in 
every chromosome, population, and category (synonymous and nonsynonymous) we tried. By 

1 This is well demonstrated in “Genetic Signatures of Strong Recent Positive Selection at the Lactase 
Gene”  Bersaglieri et. al. ​Am J Hum Genet​. 2004 Jun; 74(6): 1111–1120. 
2 Information on selection statistics from “Genomic insights into positive selection” Biswas and Akey. 
TRENDS in Genetics​. 2006 Aug; 22(8): 437-446. 



 

comparison, the neutral value for this test ranged from p-values of around 0.001 to .999 in a 
somewhat normal distribution.  

 

Fig. 1: Top-p-values of the KS test on our variants. Bottom-p-values of the KS test from 
randomly drawn values from a beta distribution. Left-synonymous. Right-nonsynonymous 

These values imply that the stationary distribution under the assumption that there is no 
selection does not accurately model this data. This could be due to underlying issues with the 
data, the analysis, or the assumptions made by the model itself. One point to note is that due to 
time and space constraints, we were only able to test on the exome, not the genome. This 
highly limited the number of synonymous variants found per chromosome. We expected that the 
beta distribution would only fit synonymous variants, as we expected there to be little selection 
on synonymous variants and greater selection on nonsynonymous variants. Even so, we did not 
see a significantly better fit for the model on synonymous variant data.  



 

4N​e​s Coefficient Estimation 

 

 
Fig. 2: Top-Slopes of linear regression of ; Bottom-p-values of the linearog(ϕ (p)/ϕ(p))  l s  
regression 
 
 

To estimate 4N​e​s, we first binned the allele frequencies into bins of size 0.01, then ran a 
linear regression to estimate the slope and the intercept of the model.  

Assumptions 

 There were a lot of assumptions made while analyzing this data. One, we assume 
gnomAD is a random sampling of alleles given subpopulations. While we do not have clear 
evidence for this, we would need to make this assumption with practically any dataset. We also 
assume that the stationary distribution hypothesis can be applied to large classes of mutations, 
rather than being a theoretical distribution of alleles over a specific site. The stationary 
distribution is generally discussed as being derived for a random mutation at a given locus 
rather than a genome-wide distribution. It also assumes, naturally, that the population is at a 
stable equilibrium-assuming there are only consistent and stable forces of selection, migration, 



 

and drift. Given that we know that the human population has been rising rapidly (changing the 
force of drift) as well as dramatic changes to human lifestyles and environments that likely have 
had an effect on both selection and migration, these assumptions seem extremely shaky.  3

Discussion 
The data processing aspect of this work should be noted particularly for the fact that we 

focused exclusively on exome data rather than genomic data. While this was necessary due to 
space constraints-the uncompressed version of the exomic data was around 400 GB-this 
significantly reduced the number of synonymous variants we were able to analyze. The 
difference between the number of variants tested for nonsynonymous and synonymous 
conditions could have an effect on the quality of our selection coefficient results in particular. 

The metric we used to estimate the slope for the selection coefficient, as well as its 
p-value, is reliant on the bin size used. Using too large a bin size could erroneously give a good 
fit to the line; too small with not enough data may erroneously give a poorly fitting line. That 
being said, there are some very strong trends in the data with highly significant p-values, which 
indicates that there may be some validity to the selective model for the stationary distribution. 
More conservatively, it does imply that there is a consistent distribution underlying the spread of 
allele frequencies that partially relies on the distinction between synonymous and 
nonsynonymous variants. Whether this distribution can be described by the stationary model 
still remains unclear-the slope may be representative of some other metric. 

This work unfortunately did not lead to particularly conclusive results on whether the 
stationary distribution model can be used at all for the human population, but the preliminary 
results we have so far suggest against it. That being said, we could continue to test this theory 
on the human population by analyzing more specific sets of variants or including classes of 
functionality to separate out the data. 

Supplemental Information 
The GitHub repository for our code for this project can be accessed here: 

https://github.com/priyappillai/rare_muts 
A supplemental zip file has been attached containing raw data. 

3 Information on the assumptions for the stationary distribution from “Stationary Allele Frequency 
Distributions.” Rannala. ​eLS​. 2013 Apr 

https://github.com/priyappillai/rare_muts

